Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria

نویسندگان

  • D. Barrie Johnson
  • Sabrina Hedrich
  • Eva Pakostova
چکیده

Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A. cryptum. Measurements of redox potentials of iron, copper and chromium couples in acidic, sulfate-containing liquors showed that these differed from situations where metals are not complexed by inorganic ligands, and supported the current observations of indirect copper oxido-reduction and chromium reduction mediated by acidophilic bacteria. The implications of these results for both industrial applications of acidophiles and for exobiology are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Heavy Metals from Urban Sewage Sludge Using Acidophilic Thiobacillus ferrooxidans

Background & objectives: The presence of heavy metals in urban sewage sludge limits its use as a soil modifier. The purpose of this study was to remove heavy metals (Cu, Zn, Cd and Pb) from urban sewage sludge using Acidophilic Thiobacillus ferrooxidans bacteria. Methods: In this experimental study, the sludge samples were collected from Shiraz wastewater treatment plant. Bioleaching tests were...

متن کامل

Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix

Extremely acidophilic iron-oxidizing Gram-positive bacteria comprise species within the phyla Firmicutes and Actinobacteria. Here, we report the 4.02-Mb draft genome of Acidithrix ferrooxidans Py-F3, which was isolated from a stream draining an abandoned copper mine and proposed as the type species of a new genus of Actinobacteria.

متن کامل

Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects

Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of f...

متن کامل

Evaluation of Toxicity of Iron, Chromium and Cadmium on Bacillus cereus Growth

Objective High concentration of iron and other trace elements could restrict bacterial growth and modify their metabolic pattern as well. However, this study aimed to find out the influence of iron, chromium, cadmium and synergism or antagonism between these elements on the growth of a gram positive bacterium. Materials and Methods In a series of experiments, Bucillus cereus was cultured in a n...

متن کامل

Genome Sequence of the Acidophilic Iron Oxidizer Ferrimicrobium acidiphilum Strain T23T

Extremely acidophilic iron-oxidizing bacteria have largely been characterized for the phyla Proteobacteria and Nitrospira. Here, we report the draft genome of an iron-oxidizing and -reducing heterotrophic mesophile of the Actinobacteria, Ferrimicrobium acidiphilum, which was isolated from an abandoned pyrite mine. The genome sequence comprises 3.08 Mb.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017